A Hopf bifurcation breaking rotation symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1988 J. Phys. A: Math. Gen. 21 L875
(http://iopscience.iop.org/0305-4470/21/18/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:59

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A Hopf bifurcation breaking rotation symmetry

G Cicogna \dagger and G Gaeta \ddagger
\dagger Dipartimento di Fisica, Università di Pisa, 56100 Pisa, Italy
\ddagger Dipartimento di Fisica, Università di Roma, 00185 Roma, Italy

Received 14 June 1988

Abstract

We show that a double-degenerate Hopf problem, exhibiting covariance with respect to the rotation group $S O(2)$, can admit a bifurcating periodic solution which breaks this symmetry.

It is a well known property of bifurcation phenomena in the presence of symmetry $[1,2]$ that the occurrence of a bifurcation usually corresponds to a breakdown of this symmetry; in fact, the branching solution exhibits, in general, a strictly lower symmetry than the original problem. The case when the symmetry is described by the group $\mathrm{SO}(2)$ is in some sense a very special case: there is in fact a close connection of this symmetry to Hopf-type bifurcations [1-3]. On the other hand, it is known that periodic branching solutions to standard two-dimensional $\mathrm{SO}(2)$-covariant Hopf problems actually preserve this covariance [1-4]. The purpose of this letter is to show a mechanism by which a bifurcation problem exhibiting covariance under the rotation group $\mathrm{SO}(2)$, and in the presence of multiple critical imaginary eigenvalues, admits a bifurcating periodic solution which breaks this symmetry.

Consider a four-dimensional bifurcation problem of the form

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}=\omega \frac{\mathrm{d} u}{\mathrm{~d} \tau}=f(\lambda, u) \quad u=u(t) \quad u \in R^{4}, \lambda \in R \tag{1}
\end{equation*}
$$

with the usual rescaling $t \rightarrow \tau=\omega t$ (in such a way that one has to look for 2π-periodic solutions in τ), and where $f: R \times R^{4} \rightarrow R^{4}$ is assumed to be smooth (e.g. analytical, for simplicity), with $f(\lambda, 0)=0$.

We assume now, explicitly, that (1) is a 'double-degenerate' Hopf problem, and that it is covariant under the rotation group $\mathrm{SO}(2)$. More precisely:
(i) there is a 'critical value' $\lambda=\lambda_{0}$ of the control parameter λ for which the linearised part of f (the prime denotes differentiation)

$$
L(\lambda) \equiv f_{u}^{\prime}(\lambda, 0)
$$

possesses two imaginary eigenvalues $\pm i \omega_{0}$ with double (geometrical and algebraic) multiplicity, and
(ii) there is a reducible representation

$$
T=T_{1} \oplus T_{2}
$$

of $\mathrm{SO}(2)$, where T_{1} and T_{2} are equivalent to the fundamental real orthogonal twodimensional representation T_{0} of $\mathrm{SO}(2)$, such that

$$
\begin{equation*}
f(\lambda, T u)=T f(\lambda, u) \tag{2}
\end{equation*}
$$

As a first step, starting from (i) and (ii), it is easy to see that it is possible to perform a linear change of coordinates u, in such a way that, with respect to the new coordinates, $L\left(\lambda_{0}\right)$ takes the form

$$
L_{0} \equiv L\left(\lambda_{0}\right)=\omega_{0}\left(\begin{array}{cc}
J & 0 \tag{3}\\
0 & \pm J
\end{array}\right) \quad J=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

For simplicity, we shall use the same notation with respect to the new variables; from now on, we shall always refer to this new system of coordinates. In addition, the $\mathrm{SO}(2)$ covariance is preserved; precisely, the new $f(\lambda, u)$ still satisfies (2), where now

$$
T=\left(\begin{array}{cc}
T_{0} & 0 \tag{4}\\
0 & T_{0}
\end{array}\right)
$$

Note the two alternative possibilities (the ' \pm ' sign in (3)) for L_{0} : it is impossible, in fact, to further reduce L_{0} into a unique form without destroying the $S O$ (2) covariance.

Due to the multiplicity of the critical eigenvalues, in order to ensure the existence of a bifurcating solution (cf [5]), we need another 'weak' form of symmetry for the $\operatorname{map} f(\lambda, u)$, i.e.
(iii) there is a linear operator $A(\neq I)$ posessing the eigenvalue $\alpha=1$, such that

$$
f(\lambda, A u)=A f(\lambda, u)
$$

In particular, as a consequence of (i) and (3), one has

$$
\begin{equation*}
L_{0} A=A L_{0} \tag{5}
\end{equation*}
$$

and the geometrical multiplicity of the eigenvalue $\alpha=1$ of A is necessarily equal to two. The following result then holds.

Lemma. Let $V_{1}=R^{2}$ be the subspace spanned by the eigenvectors of A with eigenvalue $\alpha=1$. Then

$$
\left.f_{1} \equiv f\right|_{V_{1}}: R \times V_{1} \rightarrow V_{1}
$$

and so (1) admits a restriction to V_{1}.
The proof follows easily, taking $v \in V_{1}$, from

$$
A f(\lambda, v)=f(\lambda, A v)=f(\lambda, v) \in V_{1}
$$

If now L_{0} in (3) has the sign ' + ', then the reduced problem to V_{1} still exhibits the $\mathrm{SO}(2)$ covariance: indeed, as a consequence of (ii) and (3)-(5), $f_{1}(\lambda, v)$ is covariant with respect to the representation T_{0} acting on V_{1}. The same is not true in general if the sign in (3) is ' - '. Consider, for instance, the case in which A has the special form

$$
A=\left(\begin{array}{cc}
0 & S^{-1} \tag{6}\\
S & 0
\end{array}\right)
$$

where S is a 2×2 real non-singular matrix. Then, writing

$$
\begin{aligned}
& u=\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \equiv\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \\
& f=\left(f_{1}, f_{2}, f_{3}, f_{4}\right) \equiv\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right)
\end{aligned}
$$

assumption (i) becomes, with $X \equiv\left(X_{1}, X_{2}\right)$, etc,

$$
Y(\lambda ; x, y)=S X\left(\lambda ; S^{-1} y, S x\right) \quad x \in R^{2}, y \in R^{2}
$$

and V_{1} is spanned by the vectors $v \equiv(x, S x)$. Once again, (cf $[3,5]$), one may remark upon the reduction in the dimensionality of the problem, operated by the Z_{2} symmetry generated by the operator A (in the form (6), $A^{2}=I$). The reduced problem can, in fact, be written in the form

$$
\begin{equation*}
\mathrm{d} x / \mathrm{d} t=X(\lambda ; x, S x) \quad x \in R^{2} \tag{7}
\end{equation*}
$$

If the sign in (3) is now ' - ', one has from (5) that $S J=-J S$, and then S has the form

$$
S=a\left(\begin{array}{rr}
1 & 0 \tag{8}\\
0 & -1
\end{array}\right)+b\left(\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right)=\rho\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) R_{\theta}
$$

for some $\rho>0$ and $R_{\theta} \in T_{0} \simeq S O(2)$, and in this case the reduced equation (7) is in general not symmetric under $\mathrm{SO}(2)$.

We now summarise the above results, considering for simplicity only the case (6), and observing also that, if in (3) the sign is ' + ', then $S J=J S$ and therefore

$$
\begin{equation*}
S=a I+b J=\rho R_{\theta} . \tag{9}
\end{equation*}
$$

Theorem. Given (1), let (i), (ii) and (iii) be verified, with A given by (6). Let the linearised part, put in the form (3), have the sign ' + '. The problem can then be reduced to a standard two-dimensional Hopf problem which is $\mathrm{SO}(2)$ covariant. Assuming standard transversality conditions, there is a bifurcating solution of the form

$$
\begin{aligned}
& x(t)=r\binom{\cos \omega t}{\sin \omega t} \quad y(t)=\rho r\binom{\cos (\omega t+\theta)}{\sin (\omega t+\theta)}=S x(t) \\
& \lambda=\lambda(r) \quad \text { with } \lambda(r) \rightarrow \lambda_{0} \quad \text { when } r \rightarrow 0 \\
& \omega=\omega(r) \quad \text { with } \omega(r) \rightarrow \omega_{0} \quad \text { when } r \rightarrow 0
\end{aligned}
$$

where r is a real parameter defined in a neighbourhood of the origin, and for some fixed ρ, θ. This solution preserves the $\mathrm{SO}(2)$ covariance; indeed, $T_{0} x(t)$ and $T_{0} y(t)$ also solve the same problem, and in fact only the 'fundamental frequency' ω appears in the solution. If instead the linear part (3) has the sign ' - ', one obtains a twodimensional reduced equation which is in general not $\mathrm{SO}(2)$ covariant, and the bifurcating solution has the form

$$
x(t)=r\binom{\cos \omega t}{\sin \omega t}+\text { нот } \quad y(t)=\rho r\binom{\cos (\omega t+\theta)}{-\sin (\omega t+\theta)}+\text { нOT }
$$

where now нот are higher-order terms (in the parameter r) containing higher-order harmonics.

A very simple explicit example in which all the above assumptions are verified, a bifurcating solution exists, and which actually breaks the initial $\mathrm{SO}(2)$ symmetry or not, depending on the sign in the second equation, is the following:

$$
\begin{aligned}
& \mathrm{d} x / \mathrm{d} t=J x+\lambda x+y|y|^{2} \\
& \mathrm{~d} y / \mathrm{d} t= \pm J y+\lambda y+x|x|^{2}
\end{aligned}
$$

where $|\cdot|$ is the standard R^{2} norm.
It is not difficult, of course, to extend the above method and results to the case of larger multiplicities M (i.e. $M>2$) of the critical eigenvalues of L_{0}, in $2 M$-dimensional problems.

As a final remark, let us emphasise the crucial role played in our discussion by the operator A (or S, if in the form (6)). In fact, one can see that the $S O(2)$ symmetry is broken or not depending on whether S has the form (8) or (9). In the above discussion, we referred to the classical Hopf procedure just for definiteness: we therefore had to deal with the linear term (3) and the double possibility for the sign in it, as explained. But it is clear that, being essentially based on group-theoretical ideas, our argumentsand in particular the occurrence of the breaking of the $\operatorname{SO}(2)$ covariance-hold equally even if different specific hypotheses are assumed in order to have bifurcations. For instance, the reduction of the problem to a two-dimensional form (7) can allow, depending on the form of the function X, the use of the classical Poincaré-Bendixson results in order to ensure the presence of bifurcating limit cycles [6, 7]. Similarly, stability exchange arguments can equally well be used within our scheme: we mention here, as a typical result, the fact that, if at the critical point λ_{0} the trivial zero solution is asymptotically stable, and for $\lambda>\lambda_{0}$ it becomes completely unstable, then a stable bifurcating solution appears [8,9]. In our case, these stability properties of the solution $x=0$ can be checked, by means of Lyapunov function techniques (see, e.g., [10]) directly on the function X in (7).

References

[1] Sattinger D H 1979 Group-Theoretic Methods in Bifurcation Theory (Berlin: Springer); 1983 Branching in the Presence of Symmetry (Philadelphia: SIAM)
[2] Golubitsky M and Schaeffer D 1985 Singularities and Groups in Bifurcation Theory (Berlin: Springer)
[3] Golubitsky M and Stewart I 1985 Arch. Rat. Mech. Anal. 89107
[4] Cicogna G and Gaeta G 1986 Phys. Lett. 116A 303
[5] Cicogna G and Gaeta G 1987 J. Phys. A: Math. Gen. 20 L425
[6] Hirsch M W and Smale S 1974 Differential Equations, Dynamical Systems, and Linear Algebra (New York: Academic)
[7] Yan-Qian Y et al 1986 Theory of Limit Cycles (Providence, RI: American Mathematical Society)
[8] Negrini P and Salvadori L 1979 Nonlinear Anal. 387
[9] Bernfeld S R, Negrini P, and Salvadori L 1982 Ann. Mat. Pura Appl. 1301070
[10] Guckenheimer J and Holmes P 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Berlin: Springer)

