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LElTER TO THE EDITOR 

A Hopf bifurcation breaking rotation symmetry 

G Cicognat and G GaetaS 
t Dipartimento di Fisica, Universita di Pisa, 56100 Pisa, Italy 
$ Dipartimento di Fisica, Universita di Roma, 00185 Roma, Italy 

Received 14 June 1988 

Abstract. We show that a double-degenerate Hopf problem, exhibiting covariance with 
respect to the rotation group SO(t) ,  can admit a bifurcating periodic solution which breaks 
this symmetry. 

It is a well known property of bifurcation phenomena in the presence of symmetry 
[ 1,2] that the occurrence of a bifurcation usually corresponds to a breakdown of this 
symmetry; in fact, the branching solution exhibits, in general, a strictly lower symmetry 
than the original problem. The case when the symmetry is described by the group 
SO(2) is in some sense a very special case: there is in fact a close connection of this 
symmetry to Hopf-type bifurcations [ 1-31. On the other hand, it is known that periodic 
branching solutions to standard two-dimensional S0(2)-covariant Hopf problems 
actually preserve this covariance [l-41. The purpose of this letter is to show a 
mechanism by which a bifurcation problem exhibiting covariance under the rotation 
group S0(2) ,  and in the presence of multiple critical imaginary eigenvalues, admits a 
bifurcating periodic solution which breaks this symmetry. 

Consider a four-dimensional bifurcation problem of the form 

du du 
-=u-=f(A, d t  d r  U )  U = U(?) u € R 4 , A e R  

with the usual rescaling t + T = ut (in such a way that one has to look for 2~-per iodic  
solutions in T), and where f :  R x R4+ R 4  is assumed to be smooth (e.g. analytical, for 
simplicity), with f ( A ,  0) = 0. 

We assume now, explicitly, that (1) is a ‘double-degenerate’ Hopf problem, and 
that it is covariant under the rotation group SO(2). More precisely: 

(i)  there is a ‘critical value’ A = A,, of the control parameter A for which the linearised 
part off  (the prime denotes differentiation) 

L ( A )  = f l ( A ,  0) 
possesses two imaginary eigenvalues f iw ,  with double (geometrical and algebraic) 
multiplicity, and 

(ii)  there is a reducible representation 

T = T,  0 T2 

of S0(2), where TI and T2 are equivalent to the fundamental real orthogonal two- 
dimensional representation To of S0(2),  such that 

f ( A ,  Tu) = U). (2) 
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As a first step, starting from (i)  and (ii), it is easy to see that it is possible to perform 
a linear change of coordinates U, in such a way that, with respect to the new coordinates, 
L(Ao) takes the form 

J O  0 -1 
(3) 

For simplicity, we shall use the same notation with respect to the new variables; from 
now on, we shall always refer to this new system of coordinates. In addition, the 
SO(2) covariance is preserved; precisely, the new f ( A ,  U )  still satisfies (2), where now 

T = ( T o  0 To O ) ) .  (4) 

Note the two alternative possibilities (the ‘*’ sign in ( 3 ) )  for Lo: it is impossible, in 
fact, to further reduce Lo into a unique form without destroying the SO(2) covariance. 

Due to the multiplicity of the critical eigenvalues, in order to ensure the existence 
of a bifurcating solution (cf [5]), we need another ‘weak’ form of symmetry for the 
map f(A, U), i.e. 

(iii) there is a linear operator A(  # I) posessing the eigenvalue Q = 1, such that 

f ( A ,  A u )  = Af(A, U). 
In particular, as a consequence of ( i )  and (3), one has 

LOA = ALo ( 5 )  

and the geometrical multiplicity of the eigenvalue Q = 1 of A is necessarily equal to 
two. The following result then holds. 

Lemma. Let V,  = R 2  be the subspace spanned by the eigenvectors of A with eigenvalue 
a=1.  Then 

f l = f l v , :  R x  V , +  V ,  

and so (1)  admits a restriction to V I .  

The proof follows easily, taking U E VI,  from 

Af(A, U )  = f ( A ,  Au) =f(A, U )  E V , .  

If now Lo in ( 3 )  has the sign ‘+’, then the reduced problem to VI still exhibits the 
SO(2) covariance: indeed, as a consequence of (i i)  and (3)-(5), f l ( A ,  U )  is covariant 
with respect to the representation To acting on V I .  The same is nor true in general if 
the sign in (3) is ‘-’. Consider, for instance, the case in which A has the special form 

A=(:  

where S is a 2 x 2  real non-singular matrix. Then, writing 

U = (U1 9 U 2  9 U3 I 4) = (x, 9 ex29  Y ,  3 Y 2 )  

f = (fl 3 f i  , s3 , f4) = (XI 1 x* , y ,  9 Y2) 

Y ( h ;  x, y )  = SX(A; S- ly ,  Sx) 

assumption (i)  becomes, with X = (XI ,  X 2 ) ,  etc, 

X E  R ’ , ~ E  R’ 



Letter to the Editor L877 

and V, is spanned by the vectors U = ( x ,  S x ) .  Once again, (cf [3,5]), one may remark 
upon the reduction in the dimensionality of the problem, operated by the Z2 symmetry 
generated by the operator A (in the form ( 6 ) ,  A'= I ) .  The reduced problem can, in 
fact, be written in the form 

dxld t  = X ( A ;  x, S x )  X E  R 2 .  ( 7 )  

If the sign in (3)  is now '-', one has from (5) that SJ = -JS, and then S has the form 

S = a ( l  o ) + b ( l  0 1  o ) = p ( l  O)R .  
0 -1  0 -1  

for some p > 0 and Re E To= S0(2), and in this case the reduced equation ( 7 )  is in 
general not symmetric under SO(2). 

We now summarise the above results, considering for simplicity only the case ( 6 ) ,  
and observing also that, if in (3) the sign is '+', then SJ = JS and therefore 

S = a l +  bJ = PRO. (9) 

Theorem. Given ( l ) ,  let (i), (ii) and (iii) be verified, with A given by ( 6 ) .  Let the 
linearised part, put in the form (3) ,  have the sign 'i-'. The problem can then be reduced 
to a standard two-dimensional Hopf problem which is SO(2) covariant. Assuming 
standard transversality conditions, there is a bifurcating solution of the form 

cos wt  COS ( U t +  e)  
sin w t  

A = A ( r )  with A ( r )  + A. when r + O  

w = w ( r )  with w ( r ) + w o  when r + O  

where r is a real parameter defined in a neighbourhood of the origin, and for some 
fixed p, 8. This solution preserves the SO(2) covariance; indeed, Tax( 1 )  and Toy(  t )  
also solve the same problem, and in fact only the 'fundamental frequency' w appears 
in the solution. If instead the linear part (3) has the sign '-0 one obtains a two- 
dimensional reduced equation which is in general not SO(2) covariant, and the 
bifurcating solution has the form 

+ HOT 
cos wt cos(wt+8)  
sin wt -sin (ut + e )  

where now HOT are higher-order terms (in the parameter r )  containing higher-order 
harmonics. 

A very simple explicit example in which all the above assumptions are verified, a 
bifurcating solution exists, and which actually breaks the initial SO(2) symmetry or 
not, depending on the sign in the second equation, is the following: 

dx/dt  = JX + A X  +ylyl' 

dyld t  = *Jy  + Ay + ~ 1 x 1 ~  

where 1 .  I is the standard R 2  norm. 
It is not difficult, of course, to extend the above method and results to the case of 

larger multiplicities M (i.e. M > 2) of the critical eigenvalues of Lo, in 2M-dimensional 
problems. 
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As a final remark, let us emphasise the crucial role played in our discussion by the 
operator A (or S,  if in the form (6)).  In fact, one can see that the SO(2) symmetry is 
broken or not depending on whether S has the form (8) or (9). In the above discussion, 
we referred to the classical Hopf procedure just for definiteness: we therefore had to 
deal with the linear term (3)  and the double possibility for the sign in it, as explained. 
But it is clear that, being essentially based on group-theoretical ideas, our arguments- 
and in particular the occurrence of the breaking of the SO(2) covariance-hold equally 
even if different specific hypotheses are assumed in order to have bifurcations. For 
instance, the reduction of the problem to a two-dimensional form (7)  can allow, 
depending on the form of the function X ,  the use of the classical Poincark-Bendixson 
results in order to ensure the presence of bifurcating limit cycles [6,7]. Similarly, 
stability exchange arguments can equally well be used within our scheme: we mention 
here, as a typical result, the fact that, if at the critical point A. the trivial zero solution 
is asymptotically stable, and for A > A. it becomes completely unstable, then a stable 
bifurcating solution appears [8,9]. In our case, these stability properties of the solution 
x = 0 can be checked, by means of Lyapunov function techniques (see, e.g., [lo]) 
directly on the function X in (7) .  
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